There is a little-known phenomenon for binomial GLMs that was pointed out by Hauck & Donner (1977: JASA 72:851-3). The standard errors and t values derive from the Wald approximation to the log-likelihood, obtained by expanding the log-likelihood in a second-order Taylor expansion at the maximum likelihood estimates. If there are some \hat\beta_i which are large, the curvature of the log-likelihood at \hat{\vec{\beta}} can be much less than near \beta_i = 0, and so the Wald approximation underestimates the change in log-likelihood on setting \beta_i = 0. This happens in such a way that as |\hat\beta_i| \to \infty, the t statistic tends to zero. Thus highly significant coefficients according to the likelihood ratio test may have non-significant t ratios.

# Quelles sont les chances de gagner un cadeau

There is a little-known phenomenon for binomial GLMs that was pointed out by Hauck & Donner (1977: JASA 72:851-3). The standard errors and t values derive from the Wald approximation to the log-likelihood, obtained by expanding the log-likelihood in a second-order Taylor expansion at the maximum likelihood estimates. If there are some \hat\beta_i which are large, the curvature of the log-likelihood at \hat{\vec{\beta}} can be much less than near \beta_i = 0, and so the Wald approximation underestimates the change in log-likelihood on setting \beta_i = 0. This happens in such a way that as |\hat\beta_i| \to \infty, the t statistic tends to zero. Thus highly significant coefficients according to the likelihood ratio test may have non-significant t ratios.